

# Bioinspired Wind Turbine Blades

Austin Salas (MAE), Si Teel (EE), Raymond Garcia (MAE), Emilio Serrano (ME), Jorge Solis (MAE), Pedro Ovalle (MAE)

Samah Ben Ayed

#### Mission

Objective: Develop and validate bio-inspired airfoil designs based on albatross bird for wind turbine blades.

Goals:

- Increase torque output.
- Reduce mechanical stress.
- Enhance energy capture for residential and commercial use.

#### **Methods:**

- Test albatross airfoil blades via wind tunnel testing.
- Additive manufacture of blades for full-scale testing and validation
- Compare performance with simulation data.

Outcome: Demonstrate how bio-inspired designs can lead to more efficient wind energy systems.

## Research

#### Preliminary Research

- Explored multiple ways to improve adaptiveness surface texture, and geometry of wind turbine blades.
- Used university resource articles and client guidance from previous bio-inspired airfoil simulations.
- Albatross airfoil selected for favorable aerodynamic performance, aligning with the client's findings.

#### Our Research Focus:

- Focus is to improve aerodynamic efficiency in small scale wind turbines for residential and commercial buildings.
- Research was done through simulation validation, additive manufacturing of complex geometries, wind tunnel testing, and full-scale testing.



# **Final Design**







• Flow simulations visualize aerodynamic efficiency, showing wake dynamics and velocity. Differences in flow patterns highlight blade performance and the resulting torque and thrust can be compared

#### **Test and Results**





relatively large increases in output.

# New Flight Albatross Energy

#### **Concept Development**

#### **Initial Concept:**

- Began with adaptive wind turbine blades but shifted focus after evaluating feasibility.
- Moved to bioinspired designs, specifically the albatross, due to its ability to glide long distances with minimal energy.

#### Albatross-Inspired Design:

- The albatross wing was chosen for its aerodynamic efficiency, making it ideal for wind turbine applications. Three blade types were developed:
- O Base albatross blade: Modeled directly based on literature from our client.
- NACA 4412 tapered blade: A standard airfoil shape and turbine taper for comparison.
- Albatross-inspired blade: Modeled with a similar taper for fair comparison of airfoil geometries.

#### **Modeling and Comparison:**

• Focused on matching surface areas between the NACA 4412 and albatross-inspired blades to enable an accurate comparison of aerodynamic performance.

| lbatross .           | Airfoil  |   |                    |                |       |    |               |                    | Modeling Parameters    | <b>GOE 706 (R</b> €                                                                                            | esarch Paper) 🔽 | NACA 4412 ~ | GOE 706 (Taper) 🔽 |
|----------------------|----------|---|--------------------|----------------|-------|----|---------------|--------------------|------------------------|----------------------------------------------------------------------------------------------------------------|-----------------|-------------|-------------------|
|                      |          |   |                    |                |       |    |               |                    | Chord length @ 0% [mr  | m]                                                                                                             | 90              | 140         | 140               |
| er Unit Chord Length |          |   | Chord Length (mm)= |                | 90    | M  | Max Thickness |                    | twist an               | ngle                                                                                                           | 30              | 30          | 30                |
|                      | y z      |   | X                  | у              | Z     | X- | location T    |                    | Chard length @ 20% [m  | _                                                                                                              | 90              | 120         | 120               |
| 1                    | 0.00115  | 0 |                    | 0.104          | 0.000 |    | 1             | 0.0023             |                        |                                                                                                                |                 |             |                   |
| 0.94974              | 0.01614  | 0 | 85.477             | 1.453          | 0.000 |    | 0.94974       | 0.0129             |                        | _                                                                                                              | 30              | 30          | 30                |
| 0.89957              | 0.02643  | 0 | 80.961             | 2.379          | 0.000 |    | 0.89957       |                    | Chord length @ 40% [m  | -                                                                                                              | 110             | 110         | 110               |
| 0.79927              | 0.04521  | 0 | 71.934             | 4.069          | 0.000 |    | 0.79927       | 0.03269            |                        | ngle                                                                                                           | 15              | 15          | 15                |
| 0.69898              | 0.06309  | 0 | 62.908             | 5.678          | 0.000 |    | 0.69898       | 0.04727            | Chord length @ 60% [m  | m]                                                                                                             | 130             | 90          | 90                |
| 0.59873              | 0.07837  | 0 | 53.886             | 7.053          | 0.000 |    | 0.59873       | 0.00020            | twist on               |                                                                                                                | 9               | 9           | 9                 |
| 0.49854              | 0.09045  | 0 |                    | 8.141          | 0.000 |    | 0.49854       | 0.07258            |                        |                                                                                                                |                 |             |                   |
| 0.39841              | 0.09873  | 0 | 35.857             | 8.886          | 0.000 |    | 0.39841       |                    | Chord length @ 80% [m  |                                                                                                                | 80              | 60          | 60                |
| 0.29839              | 0.09942  | 0 |                    | 8.948          | 0.000 |    | 0.29839       | 0.09558            |                        | -                                                                                                              | 5               | 5           | 5                 |
| 0.19847              | 0.09491  | 0 |                    | 8.542<br>7.696 | 0.000 |    | 0.19847       | 0.10318            | Chord length @ 100% [m | ım]                                                                                                            | 20              | 20          | 20                |
| 0.14862<br>0.09884   | 0.0854   | 0 | 13.376             | 7.686<br>6.462 | 0.000 |    | 0.14862       | 0.09907            | twist an               | ngle                                                                                                           | 2               | 2           | 2                 |
| 0.09884              | 0.0718   | 0 | 8.896<br>6.659     | 5.633          | 0.000 |    | 0.09884       | 0.08748            | A Ol-                  | _                                                                                                              | 86.6666667      | 90          | 90                |
| 0.07399              | 0.00239  | 0 | 4.429              | 4.391          | 0.000 |    | 0.07399       | 0.07798<br>0.06208 |                        |                                                                                                                |                 |             |                   |
| 0.02444              | 0.04879  | 0 | 2.200              | 3.095          | 0.000 |    | 0.04921       | 0.06208            |                        | ^2)                                                                                                            | 48896           | 48188       | 47088             |
| 0.01214              | 0.022    | 0 | 1.093              | 1.980          | 0.000 |    | 0.01214       | 0.0292             |                        |                                                                                                                |                 |             |                   |
| 0.01214              | 0.022    | 0 | 0.000              | 0.000          | 0.000 |    | 0.01214       | 0.0232             |                        | -                                                                                                              |                 |             |                   |
| 0.01262              | -0.0072  | 0 | 1.136              | -0.648         | 0.000 |    |               |                    |                        |                                                                                                                |                 |             |                   |
| 0.02516              | -0.00989 | 0 | 2.264              | -0.890         | 0.000 |    |               |                    |                        |                                                                                                                |                 |             |                   |
| 0.05019              | -0.01329 | 0 | 4.517              | -1.196         | 0.000 |    |               |                    |                        |                                                                                                                |                 | -           | 1                 |
| 0.07523              | -0.01539 | 0 | 6.771              | -1.385         | 0.000 |    |               |                    |                        |                                                                                                                |                 |             | Service Control   |
| 0.10025              | -0.01568 | 0 | 9.023              | -1.411         | 0.000 |    |               |                    |                        |                                                                                                                | - D             |             | 745               |
| 0.15022              | -0.01367 | 0 | 13.520             | -1.230         | 0.000 |    |               |                    | 1000000                | Salar Sa |                 |             | 2000              |
| 0.20013              | -0.00827 | 0 | 18.012             | -0.744         | 0.000 |    |               |                    | Resin Prin             | ted Albatr                                                                                                     | oss Blade       | – Unsand    | ded               |
| 0.29994              | 0.00384  | 0 | 26.995             | 0.346          | 0.000 |    |               |                    |                        | 1549 1                                                                                                         |                 | 1000        | 400               |
| 0.3998               | 0.01246  | 0 | 35.982             | 1.121          | 0.000 |    |               |                    |                        |                                                                                                                |                 |             | 411               |
| 0.49971              | 0.01787  | 0 | 44.974             | 1.608          | 0.000 |    |               |                    |                        |                                                                                                                |                 |             |                   |
| 0.59971              | 0.01809  | 0 | 53.974             | 1.628          | 0.000 |    |               |                    |                        |                                                                                                                |                 |             | -11               |
| 0.69245              | 0.01582  | 0 | 62.321             | 1.424          | 0.000 |    |               |                    |                        |                                                                                                                |                 |             |                   |
| 0.7998               | 0.01252  | 0 | 71.982             | 1.127          | 0.000 |    |               |                    |                        |                                                                                                                |                 |             |                   |
| 0.89989              | 0.00653  | 0 | 80.990             | 0.588          | 0.000 |    |               |                    |                        |                                                                                                                |                 |             |                   |
| 0.94995              | 0.00324  | 0 | 85.496             | 0.292          | 0.000 |    |               |                    | 17 17 17 17 17 18      |                                                                                                                |                 |             |                   |
| 1                    | -0.00115 | 0 | 90.000             | -0.104         | 0.000 |    |               |                    | Resin Pri              | nted Albai                                                                                                     | tross Blad      | e - Sande   | d                 |
|                      |          |   |                    |                |       |    |               |                    |                        |                                                                                                                |                 |             |                   |

### References

Yossri, W., Ben Ayed, S., & Abdelkefi, A. (2023). Evaluation of the efficiency of bioinspired blade designs for low-speed small-scale wind turbines with the presence of inflow turbulence effects. *Energy*, 273, 127210. <a href="Yossrietal-2023.pdf">Yossrietal-2023.pdf</a>
 YouTube. (2023, October 3). Wind tunnel blockage ratio explained. YouTube. <a href="https://www.youtube.com/watch?v=gope2XlBwA4">https://www.youtube.com/watch?v=gope2XlBwA4</a>

3. Bešlagić, E., Lemeš, S., & Hadžikadunić, F. (1970, January 1). Procedure for determining the wind tunnel blockage correction factor. SpringerLink. <a href="https://link.springer.com/chapter/10.1007/978-3-030-46817-0\_38">https://link.springer.com/chapter/10.1007/978-3-030-46817-0\_38</a>

4. Bai, J., Zhang, L., Yang, K., Zhao, D., & Xu, J. (2023b, January 16). Interactive effects of wind tunnel sidewalls on flow structures around 2D airfoil model - journal of thermal science. SpringerLink. <a href="https://link.springer.com/article/10.1007/s11630-022-1752-7">https://link.springer.com/article/10.1007/s11630-022-1752-7</a>

Bai, J., Zhang, L., Yang, K., Zhao, D., & Xu, J. (2023a, January 16). Interactive effects of wind tunnel sidewalls on flow structures around 2D airfoil model - journal of thermal science. SpringerLink. <a href="https://link.springer.com/article/10.1007/s11630-023-1753-7">https://link.springer.com/article/10.1007/s11630-023-1753-7</a>

- Lu, D., Lu, Z., Han, Z., Xu, X., & Huang, Y. (2022c, October 10). Numerical investigation on the effect of blockage on the icing of airfoils. MDPI. https://www.mdpi.com/2226-4310/9/10/587
- Lu, D., Lu, Z., Han, Z., Xu, X., & Huang, Y. (2022b, October 10). Numerical investigation on the effect of blockage on the icing of airfoils. MDPI. <a href="https://www.mdpi.com/2226-4310/9/10/587">https://www.mdpi.com/2226-4310/9/10/587</a>
- Lu, D., Lu, Z., Han, Z., Xu, X., & Huang, Y. (2022a, October 10). Numerical investigation on the effect of blockage on the icing of airfoils. MDPI. https://www.mdpi.com/2226-4310/9/10/587

SimScale. (2024). CFD Modeling, Analysis, and Online Simulation For Beginners. Retrieved from CFD Analysis, Modeling &

Simulation For Beginners | SimScale 10. NACA 4412 (NACA4412-IL). (n.d.). NACA 4412 (naca4412-il) (airfoiltools.com)